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Abstract
Based on the Keldysh Green’s function technique and the equation-of-motion
method, we investigate theoretically the electronic transport properties of an
Aharonov–Bohm ring with embedded coupled double quantum dots connected
to two electrodes in a symmetrical parallel configuration in the presence of
strong interdot Coulomb interaction. Special attention is paid to the effects of
the interdot Coulomb interaction on the transport properties. It has been shown
numerically that the interdot Coulomb interaction gives rise to four electronic
states in the ring. The quantum interferences between two strongly coupled
electronic states and two weakly coupled ones lead to two Breit–Wigner and
two Fano resonances in the linear conductance spectrum with the magnetic flux
switched on or the imbalance between the energy levels of two quantum dots.
The positions and shapes of the four resonances can be controlled by adjusting
the magnetic flux through the device or energy levels of the two quantum dots.
When the Fermi energy levels in the leads sweep across the weakly coupled
electronic states, the negative differential conductance (NDC) is developed in
the current–voltage characteristics for the non-equilibrium case.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electronic transport through mesoscopic systems such as a quantum dot (QD) or molecular
systems with geometrical dimensions smaller than the elastic mean free paths has been an
active research subject due to the advances in the nanofabrication of quantum devices in recent
years [1–4]. In such mesoscopic systems, the electronic transport is ballistic, while the phase
coherence is preserved. In particular, a double quantum dot connected to the source and to

4 Author to whom any correspondence should be addressed.

0953-8984/07/246201+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/24/246201
mailto:haochen@fudan.edu.cn
http://stacks.iop.org/JPhysCM/19/246201


J. Phys.: Condens. Matter 19 (2007) 246201 Y-S Liu et al

the drain electrodes, either in series or parallel configurations, has been extensively studied
experimentally and theoretically [5–15], mainly because of its potentials for fundamental
physical studies as well as for applications for future quantum communication techniques.

Holleitner et al [16] proposed a quantum device with two coupled quantum dots embedded
in an Aharonov–Bohm ring, and a flux-periodic current was detected for weakly coupled
quantum dots. Kobayashi et al [17] presented a quantum interference experiment with
a quantum dot embedded in an Aharonov–Bohm ring fabricated in a two dimensional
AlGaAs/GaAs heterostructure, and they gave a convincing demonstration of the Fano effect
in a mesoscopic system. The well known Fano effect is a result of the quantum interference
between the resonance state and the continuum state, and is a powerful tool to study the
electron phase variation in QD systems. In addition to some experimental works, there has
been theoretical work on an electron through a double quantum-dot molecule connected in a
parallel configuration to the leads [7]. The system is modelled by means of a non-interacting
two-site Anderson Hamiltonian. In general the conductance spectrum is composed of Breit–
Wigner and Fano line shapes at the bonding and antibonding states, respectively. Recently,
coherent electronic transport through a double quantum dot system connected in series with
two leads has been studied by Bulka et al [18], in which electron correlation effects are treated.
More recently, Meden et al [19] investigated electronic transport through parallel DQDs with
electron–electron correlations at different sites by using the numerical renormalization group
technique at zero temperature. Their results show that the correlations generate resonances in
electronic transport. However, the non-equilibrium cases with the appearance of the negative
differential conductance have not been considered in [19]. Kuo et al [20] investigated charge
transport through parallel double single electron transistors (SETs) with the interdot Coulomb
repulsion in the absence of the Fano effect where the two SETs do not couple to each other
through the two leads. Lu et al [21] studied the Fano effect through parallel-coupled DQDs in
the presence of on-dot Coulomb correlation without the interdot Coulomb interaction.

Recently, the double quantum dot system has become of special interest for quantum
computation as a basic unit of information, a qubit, because the entanglement of electrons
can be generated in a controllable manner [22]. For example, the two coupled quantum
dots always form bonding and antibonding states like a molecule of two atoms. This opens
the possibility for realistic applications of quantum computers [23–25]. In this paper we
study electronic transport through DQDs including the interdot Coulomb interaction within
the Keldysh Green’s function technique. The DQDs are attached to the two external leads in
a parallel configuration. Numerical results show that the strong interdot Coulomb interaction
opens new resonant channels across the device. As a result of the quantum interference effect
of the electronic transition through the weakly coupled and strongly coupled electronic states,
the linear conductance spectrum is often composed of two Breit–Wigner resonances and two
Fano resonances when the magnetic field is threading the ring or the finite energies difference
of the two quantum dots is presented for the symmetrical coupling system. These electronic
states can be controlled by adjusting the parameters of the system. The non-equilibrium case
is also studied in this paper. We find that the negative differential conductance (NDC) occurs
when the applied voltage sweeps across the weakly coupled electronic states and the difference
between the numbers of electrons occupying the two quantum dots changes drastically.

2. Physical model

The configuration consists of two single-level coupled quantum dots attached in a parallel
configuration to the leads as schematically shown in figure 1. The total magnetic flux (�L+�R)

is applied perpendicular to the structure, which provides the Aharonov–Bohm phase-shift
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Figure 1. Schematic plot of the double coupled quantum
dots coupled in a symmetrical parallel configuration to
the left and right leads. �L threads through the left sub-
ring and �R threads through the right sub-ring.

between the electron waves propagating in the clockwise and anticlockwise directions. The
quantum system is modelled by the following Hamiltonian:

Htotal = Hleads + HDQD + HT, (1)

where Hleads describes the two leads in the noninteracting quasiparticle approximation,

Hleads =
∑

k,ν=L ,R

εkνa†
kνakν , (2)

and a†
kν (akν) creates (destroys) an electron with the single-electron energy εkν and momentum

h̄k in lead ν(ν = L, R). When the external bias voltage V is applied across the mesoscopic
system, the chemical potential difference between the two leads becomes μL − μR = eV .
HDQD describes the dynamics of the coupled double dots with interdot interaction U

HDQD =
∑

j=1,2

ε j d
†
j d j + Ud†

1 d1d†
2 d2 − tce

iθ d†
1 d2 − t∗

c e−iθ d†
2 d1, (3)

where d†
j (d j) ( j = 1, 2) creates (destroys) an electron with the bare energy level ε j in dot

j , and tc denotes the inter-dot tunnelling coupling. This is valid when the sizes of the two
quantum dots are small; only one energy level is active in each quantum dot [26, 27]. The
interdot Coulomb interaction is included, U = e2/ε d, with the dielectric constant ε and the
quantum dots distance d . The interdot HT models the tunnelling among the coupled double
dots and the two leads

HT =
∑

k,ν=L ,R

[(Vν1d†
1 + Vν2d†

2 )akν + H.c]. (4)

By assuming the energy independence of the tunnelling coupling among the double dots and the
leads, the tunnelling matrix elements can be written as VL1 = |VL1|eiφ/4, VL2 = |VL2|e−iφ/4,
VR1 = |VR1|e−iφ/4, and VR2 = |VR2|eiφ/4, with the AB phase φ = 2π(�L + �R)/�0 and
the flux quantum �0 = hc/e. The left sub-ring of the AB ring is threaded by the flux �L and
the right sub-ring of the AB ring is threaded by the flux �R . The magnetic flux imbalance θ

is expressed by the difference of �R and �L , θ = π(�R − �L)/�0, where the contribution
from the phases of Vν,i is cancelled [8, 10]. In the presence of the magnetic flux, the linewidth
matrices 	L and 	R can be expressed as

	L =
(

	L
1

√
	L

1 	L
2 eiφ/2

√
	L

1 	L
2 e−iφ/2 	L

2

)
, (5)

and

	R =
(

	R
1

√
	R

1 	R
2 e−iφ/2

√
	R

1 	R
2 eiφ/2 	R

2

)
, (6)

with the linewidth matrix 	ν
j = ∑

k |Vν j |22πδ(ε − εkν), ( j = 1, 2).
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3. Green’s function of the two dots

In order to study the transport behaviour of the device shown in figure 1, we utilize the Keldysh
Green’s function of the two dots. First, we consider two coupled quantum dots as a ‘dimer’,
and perform a unitary transformation to HDQD in the basis of the bonding and antibonding
states [10, 28]

d1 = cos βeiθ f+ + sin β f− (7)

and

d2 = − sin β f+ + cos βe−iθ f−, (8)

with parameter β defined as

β = 1

2
tan−1 2tc

ε1 − ε2
. (9)

The Hamiltonian of the isolated quantum dot molecule is expressed as

H DQD = ε+ f †
+ f+ + ε− f †

− f− + U f †
+ f+ f †

− f−, (10)

with

ε± = 1
2 [ε1 + ε2 ±

√
(ε1 − ε2)2 + 4t2

c ], (11)

where f †
+(−) is the creation operator for the bonding (antibonding) state of the two-dot set-up.

In terms of the new Fermi operator, the tunnelling Hamiltonian among the two leads and DQD
is written as

H T =
∑

k,ν=L ,R

{(V ν+ f †
+ + V ν− f †

−)akν + H.c.}, (12)

with the effective tunnelling matrix elements

V ν+ = Vν1 cos βe−iθ − Vν2 sin β, (13)

V ν− = Vν1 sin β + Vν2 cos βeiθ . (14)

The Hamiltonian of the whole system can be rewritten as

H̃total =
∑

k,ν=L ,R

εkνa†
kνakν + ε+ f †

+ f+ + ε− f †
− f− + U f †

+ f+ f †
− f−

+
∑

k,ν=L ,R

{(V ν+ f †
+ + V ν− f †

−)akν + H.c.}. (15)

The DQD retarded, advanced Green’s functions for the two molecular states are defined in the
time space as

Gr
αβ(t, t ′) = −i(t − t ′)〈{ fα(t), f †

β (t ′)}〉, (16)

Ga
αβ(t, t ′) = i(t ′ − t)〈{ fα(t), f †

β (t ′)}〉, (17)

and the lesser Green’s function is written

G<
αβ(t, t ′) = i〈 f †

α (t ′) fβ(t)〉, (α, β = ±) (18)

where (t) is the step function; bracket 〈·〉 represents the statistical average. The above
Green’s functions only depend on the variable �t = t − t ′ when all calculations are limited
to the steady state. In order to calculate the current through the device, we have to know
the expressions of the retarded and lesser Green’s functions of the total system including two
leads and two coupled dots. In the following, we shall derive the retarded Green’s function
Gr

αβ(ε) = 〈〈 fα | f †
β 〉〉r

ε , which is the Fourier transform of equation (16). Using the standard

4
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equation-of-motion technique ε〈〈 fα | f †
β 〉〉r

ε = 〈{ fα, f †
β }〉 + 〈〈[ fα, H̃total]| f †

β 〉〉r
ε , we arrive at the

following equation:

(ε − εα)〈〈 fα | f †
β 〉〉r

ε = δαβ + U〈〈 fα f †
α fα| f †

β 〉〉r
ε +

∑

k,ν

V να〈〈akν | f †
β 〉〉r

ε, (19)

where α = + for α = − and α = − for α = +. Two new Green’s functions appear on the
right side of equation (19). 〈〈akν | f †

β 〉〉r
ε is generated by the hopping between the two quantum

dots and the two leads, which can be expressed by using the Dyson equation

〈〈akν | f †
β 〉〉r

ε = V
∗
ναgr

kν〈〈 fα | f †
β 〉〉r

ε + V
∗
ναgr

kν〈〈 fα | f †
β 〉〉r

ε , (20)

where gr
kν is the free-electron retarded Green’s function in the two leads with the relations

gr
kν = 1/(ε − εkν + i0+). 〈〈 fα f †

α fα| f †
β 〉〉r

ε is the two-particle Green’s function generated by the
interdot interaction term in equation (3). Using the standard equation-of-motion technique for
it, we obtain

(ε − εα − U)〈〈 fα f †
α fα | f †

β 〉〉r
ε = 〈{ fα f †

α fα, f †
β }〉 +

∑

kν

{V να〈〈akν f †
α fα | f †

β 〉〉r
ε

− V
∗
να〈〈 fαa†

kν fα| f †
β 〉〉r

ε + V να〈〈 fα f †
α akν | f †

β 〉〉r
ε}. (21)

Three higher-order Green’s functions appear on the right of equation (21). In this paper, we
employ the Hartree–Fock approximation for the higher-order Green’s functions [29–31], which
is valid at temperatures higher than the Kondo temperature. Kashcheyevs et al [32], who
studied the Kondo effect at zero temperature, showed that this model can be exactly mapped
onto a generalized Anderson model and the Kondo temperature TK is given as that in a single
quantum dot. The Kondo temperature was found to be lower than the bath temperature in the
experiment [16], where the quantum dots are weakly coupled to the leads.

〈〈akν f †
α fα| f †

β 〉〉r
ε ∼ 〈 f †

α fα〉〈〈akν | f †
β 〉〉r

ε , (22)

〈〈 fα f †
α akν | f †

β 〉〉r
ε ∼ −〈 f †

α fα〉〈〈akν | f †
β 〉〉r

ε , (23)

and

〈〈 fαa†
kν fα| f †

β 〉〉r
ε ∼ 0. (24)

Flip processes between the bonding state (‘+’) and antibonding state (‘−’) are considered as
shown in equation (23). Substituting equations (22)–(24) into equation (21) and combining
equations (19) and (20), the two linear equations are obtained:

[1 − gr
αα(ε)�̄r

αα(ε) − gr
αᾱ(ε)�̄r

ᾱα(ε)]Gr
αα(ε) = gr

αα(ε)

+ [gr
αα(ε)�̄

r
αᾱ(ε) + gr

αᾱ(ε)�̄r
ᾱᾱ(ε)]Gr

ᾱα(ε), (25)

[1 − gr
ᾱᾱ(ε)�̄r

ᾱᾱ(ε) − gr
ᾱα(ε)�̄r

αᾱ(ε)]Gr
ᾱα(ε) = gr

ᾱα(ε)

+ [gr
ᾱᾱ(ε)�̄r

ᾱα(ε) + gr
ᾱα(ε)�̄r

αα(ε)]Gr
αα(ε), (26)

where gr
αα(ε) = 1−〈 f †

ᾱ fᾱ〉
ε−εα+i0+ + 〈 f †

ᾱ fᾱ〉
ε−εα−U+i0+ denotes diagonal elements of the retarded Green’s

function of two coupled dots without the connection to the leads, in which there are two
resonances located in the vicinity of ε = εα and ε = εα + U , with corresponding weights
1 − 〈 f †

ᾱ fᾱ〉 and 〈 f †
ᾱ fᾱ〉, respectively. Here nᾱ = 〈 f †

ᾱ fᾱ〉 is the occupied number in state ᾱ

of the quantum dot molecule. gᾱα = −〈 f +
α fᾱ〉

ε−εᾱ
+ 〈 f +

α fᾱ〉
ε−εᾱ−U means off-diagonal elements of the

retarded Green’s function of two coupled dots without the connection to the leads. The elements
of the retarded self-energy,

( �̄r++(ε) �̄r+−(ε)

�̄r−+(ε) �̄r−−(ε)

) = ( �̄r++,L (ε) �̄r+−,L (ε)

�̄r−+,L (ε) �̄r−−,L (ε)

) + ( �̄r++,R (ε) �̄r+−,R (ε)

�̄r−+,R (ε) �̄r−−,R (ε)

)
, due to

5
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the coupling between the quantum dot system and the two leads, are given by

�̄r
αα,ν (ε) = −i

	

2
+ iδα

	

2
cos(ηνφ/2 − θ) sin 2β, (27)

�̄r
αᾱ,ν(ε) = i

	

2
(sin2 βe−iγαᾱηνφ/2 − cos2 βeiγαᾱηνφ/2e−2iγαᾱθ ),

(δ+ = 1, δ− = −1; γ+− = 1, γ−+ = −1; ν = L, R; ηL = 1, ηR = −1).
(28)

�̄r
αα(ᾱ),ν(ε) is independent of energy under the wide-band limit approximation. We assumed

that the DQDs are attached to the left and right leads with equal strengths in the absence of the
magnetic flux. Therefore, the elements of the tunnelling matrix are identical, 	ν

j = 	 ( j =
1, 2; ν = L, R). Using equations (25)–(28), we obtain the elements of the retarded Green’s
function

Gr
++(ε) = {gr

++(ε) + [gr
+−(ε)gr

−+(ε) − gr
++(ε)gr

−−(ε)]�r
−−}/D, (29)

Gr
+−(ε) = −{gr

+−(ε) + [gr
+−(ε)gr

−+(ε) − gr
++(ε)gr

−−(ε)]�r
+−}/D, (30)

Gr
−+(ε) = −{gr

−+(ε) + [gr
+−(ε)gr

−+(ε) − gr
++(ε)gr

−−(ε)]�r
−+}/D, (31)

Gr
−−(ε) = {gr

−−(ε) + [gr
+−(ε)gr

−+(ε) − gr
++(ε)gr

−−(ε)]�r
++}/D, (32)

where

D = [1 − gr
++�

r
++ + gr

+−�
r
−+][1 − gr

−−�
r
−− + gr

−+�
r
+−]

− [gr
++�

r
+− − gr

+−�
r
−−][gr

−−�
r
−+ − gr

−+�
r
++]. (33)

Note that the electron occupation of the molecular states 〈 f †
+ f+〉, 〈 f †

− f−〉 and the correlation
value 〈 f †

+ f−〉, 〈 f †
− f+〉 must be calculated self-consistently

〈 f †
α fα〉 = −i

∫
dε

2π
G<

αα(ε), (34)

〈 f †
α fᾱ〉 = −i

∫
dε

2π
G<

ᾱα(ε). (35)

In the molecular state representation, the Green’s function Gr,<(ε) is expressed by 2 × 2
matrices Gr,<(ε) = ( Gr,<

++(ε) Gr,<
+−(ε)

Gr,<
−+(ε) Gr,<

−−(ε)

)
. The lesser Green’s function G<(ε) can be calculated

by the formula

G<(ε) = Gr (ε)�̄<(ε)Ga(ε), (36)

where the lesser self-energy
∑̄<

(ε) is obtained by

�̄<(ε) = − fL(ε)(�̄r
L − �̄a

L ) − fR(ε)(�̄r
R − �̄a

R), (37)

with the Fermi–Dirac distribution fν(ε) = 1/[1+e(ε−μν)/kB T ] (ν = L, R) for lead ν. From the
relationships of Ga(ε) = [Gr (ε)]† and �a

ν (ε) = [�r
ν(ε)]† (ν = L, R), the advanced Green’s

function and self-energies can be obtained. The DOS in state α is calculated in terms of the
diagonal elements of the retarded Green’s function Gr

ρα = − 1

π
Im Gr

αα, (α = +,−). (38)

4. Tunnelling current formula

Now let us study transport properties of the quantum device by using the Keldysh Green’s
function in the new basis of equations (7) and (8). According to the work of Jauho et al [33],
the current from the left (right) lead to the double quantum dots can be expressed as

IL(R) = ie

h̄

∫
dε

2π
Tr{	̄L(R)[G<(ε) + fL(R)(ε)(Gr(ε) − Ga(ε))]}. (39)

6
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The linewidth matrix function of lead 	̄ν describes the tunnelling coupling of the two dots to
lead ν

	̄L = 	

(
1 − sin 2β cos(φ/2 − θ) cos2 βei(φ/2−2θ) − sin2 βe−iφ/2

cos2 βe−i(φ/2−2θ) − sin2 βeiφ/2 1 + sin 2β cos(φ/2 − θ)

)
(40)

	̄R = 	

(
1 − sin 2β cos(φ/2 + θ) cos2 βe−i(φ/2+2θ) − sin2 βeiφ/2

cos2 βei(φ/2+2θ) − sin2 βe−iφ/2 1 + sin 2β cos(φ/2 + θ)

)
. (41)

It is noticed that the off-diagonal matrix elements of 	̄ν are complex numbers in the presence
of the AB phase. In the steady state, the current is uniform, so that I = IL = −IR ; the total
current I can be written as I = (IL − IR)/2. Using equation (39), the general expression of
the dc current can be expressed as

I = ie

2h̄

∫
dε

2π
Tr{[	̄L − 	̄R]G<(ε) + [	̄L fL(ε) − 	̄R fR(ε)][Gr (ε) − Ga(ε)]}. (42)

5. Numerical results and discussion

In this section, we discuss two cases: the covalent bonding limit (ε1 = ε2 = 2	) and the general
case with a nonzero difference in the levels of the two dots �ε = ε1 − ε2. When the interdot
coulomb interaction is ignored, the system can be modelled by a non-interacting two-site
Anderson Hamiltonian. Such a system has been studied extensively in the literature [5–10, 12].
It is well known that the width of the Fano resonance in the linear conductance spectrum is
zero in the absence of the magnetic field when the system is perfectly symmetrical. The reason
is that the antibonding states are decoupled from the leads due to the destructive quantum
interference between two different pathways across the quantum dot molecule [6]. When the
external magnetic field is switched on, or when the energy levels of the two different quantum
dots are not equal, the Fano resonance will occur even for the perfectly symmetrical system. In
the present work, we concentrate on the effects of the interdot Coulomb interaction U and the
inhomogeneous magnetic flux θ . The interdot coulomb interaction may give rise to the Kondo
effect when the temperature is low enough [32].

5.1. �ε = 0

We first study the symmetrical system in the covalent limit (�ε = ε1−ε2 = 0). The parameters
for our calculations are taken as ε1 = ε2 = ε0 = 2	, U = 5	, and tc = 	. For this case, the
broadenings of the two molecular states 	++ and 	−− can be calculated by the retarded self-
energy due to the coupling to the leads,

	++ = i2�
r
++ = 2	

(
1 − cos

φ

2
cos θ

)
(43)

and

	−− = i2�
r
−− = 2	

(
1 + cos

φ

2
cos θ

)
. (44)

The widths of the two states have the period of 4π for AB phase φ and 2π for the magnetic
flux imbalance of θ , which provides the possibility to control the quantum transport through
the parameters φ and θ . Most importantly, the antibonding state will be decoupled from
the leads when cos φ

2 cos θ → 1, and the bonding state is decoupled from the leads when
cos φ

2 cos θ → −1. The disappearance of the antibonding state is the consequence of the
destructive quantum interference between different pathways in the absence of the magnetic
flux in a symmetrical parallel geometry [6].

7
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Figure 2. The linear differential conductance
G as a function of the chemical potential μ

with a fixed total AB phase φ = (2n +
1)π for several flux imbalances. The
solid, dotted, and dashed lines correspond
to the cases of θ = 0, 0.25π , and 0.5π ,
respectively. Other parameters are given by
tc = 	, ε1 = ε2 = 2	, U = 5	, and
kBT = 0.02	.

The couplings between the two molecular states and the leads will be equal, 	++ =
	−− = 	, when φ = (2n + 1)π or θ = (2n + 1)π/2, (n = 0, 1, 2, . . .). Using the generalized
Landauer formula at finite temperature, the current through the double quantum dots is related
to the transmission coefficient T (ε) [11]

I = e

h

∫
dε [ fL − fR]T (ε) = e

h

∫
dε[ fL − fR] Tr[	̄LGa	̄RGr ]. (45)

When the source–drain voltage is small, the quantum system is in the linear response regime.
The linear conductance G is given

G = e2

h

∫
dε f ′

L(ε)T (ε) (46)

where f ′
L (ε) is the derivative of the Fermi–Dirac distribution function in the left lead. At the

lower temperature, f ′
L (ε) can approximate a δ function.

The linear conductance G, including strong interdot interaction, is illustrated in figure 2
as a function of the chemical potential μL = μR = μ for several different values of
inhomogeneous magnetic flux θ with a fixed magnetic flux φ = (2n +1)π at finite temperature
(kBT = 0.02	). Four apparent resonant conductance peaks related to four electronic states
with energies ε−, ε+, ε− + U and ε+ + U are observed due to the interdot interaction U and
the quantum coupling between the two quantum dots. Two wide conductance peaks are located
in the vicinity of ε− and ε+ + U , and two narrow conductance peaks appear in the vicinity
of ε+ and ε− + U , in comparison to the case without the interdot coulomb interaction U = 0
where only a single peak occurs [10]. This indicates that the interdot Coulomb interaction plays
an important role in our system, and the widths of the conductance peaks are modified by the
electron numbers on states ‘+’ and ‘−’. In fact, the state with energy ε−(ε+) is weighted by
the possibility 1 − n+(1 − n−), and the state with energy ε+ + U(ε− + U) is weighted by
the possibility n−(n+). For θ = 0, the heights of the four conductance peaks approach e2/h,
which implies that four ideal channels may be developed. The heights of the conductance
peaks become lower with the broader full width at half maximum, when θ increases from 0 to
π/2. Moreover, all conductance peaks disappear when θ = π/2, and all electron states become
localized in the dot molecule, so that they do not contribute to any electron transmission through
the double dots.

Figure 3 shows the linear conductance G versus the chemical potential μ for the fixed
inhomogeneous magnetic flux θ = (2n + 1)π/2 and different values of AB phase φ. For
the case of U = 0, two conductance peaks around 	 and 3	 approach e2/h for φ = 0. As
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Figure 3. The linear differential conductance G as a function of the chemical potential μ with
a fixed flux imbalance θ = (2n + 1)π/2 for several total AB phases. The solid, dotted, and
dashed curves correspond to the cases of φ = 0, 0.5π , and π , respectively. The dash–dotted line
corresponds to the case of U = 0 and φ = 0. Other parameters are chosen as the ones in figure 2.

a result of the destructive interference, an antiresonance dip is observed with the chemical
potential equal to 2	. When strong interdot coulomb interaction U � 	 and U � tc is
considered, the antiresonance point moves the right way, and the other antiresonance point
appears at the same energies displaced by U . The second peak becomes narrower, and the
other pair of peaks appears around the energies ε− +U and ε+ +U due to the interdot coulomb
interaction. The antiresonance phenomenon has been widely studied based on the single-
particle Green’s function using the noninteracting two-site Anderson model in the previous
theoretical work [5–10]. On increasing φ from 0 to π , the widths and heights of conductance
become narrower and lower, respectively. The positions of these antiresonances are fixed for
the AB phase. When the AB phase is equal to π , the conductance disappears completely, and
the two-dot device becomes an electrical insulator.

Fano effects have been investigated widely in mesoscopic transport without considering
the interdot interaction [5–10, 34], since its first observation in the regime of atomic physics
due to the interference between the localized state and the continuum states [35]. Two quantum
dots can be coupled to form an artificial molecule, which offers a good opportunity to study the
quantum interference when the molecule is attached in parallel configuration to two external
electron reservoirs. As reported by Orellana et al [7], the linear conductance spectrum is
composed of a Breit–Wigner resonance located around the electron state with a wide DOS
(density of states) peak and a Fano resonance located around the other electron state with a
narrow DOS peak. In the present work, we are mainly interested in the case in the presence of
the interdot interaction U and the magnetic flux imbalance θ with the fixed total magnetic flux,
for example φ = 0.2π . The linear conductance G and DOS ρα(α = +,−) as a function of
the chemical potential μ at finite temperature kBT = 0.02	 for four different values of θ are
plotted in the left and right columns in figure 4. From the DOS curve, we find the DOSs of four
possible electronic states have different widths due to interdot interaction. Two Breit–Wigner
resonances centred around the strongly coupled electronic states with broad DOS peaks and
two Fano resonances centred at the weakly coupled electronic states with narrow DOS peaks
are observed in the linear conductance curve. This is due to the fact that the phase shift of
π happens when the chemical potential μ sweeps across the weakly coupled electronic states,
whereas the invariance in the phase for the strongly coupled electron states is very small. Thus,
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Figure 4. The linear differential conductance G and LDOS ρα (α = +,−) as a function of the
chemical potential μ for several flux imbalances: 0, π/4, 3π/4 and π from top to bottom. All
dash–dotted lines show the case of U = 0. Other parameters are chosen as the ones in figure 2.

Fano effects occur at the weakly coupled electron states as a result of quantum interference. For
θ = 0, there are two wide DOS peaks centred in the vicinity of ε− and ε− + U and two narrow
DOS peaks centred in the vicinity of ε+ and ε++U , which results in two Breit–Wigner and two
Fano resonances in the linear conductance spectrum. The dotted lines shows the case of U = 0.
From our numerical results, we see that the line shape of conductance peaks around ε− and ε+
may be modified by interdot interaction, and the other group conductance peaks consisting of
Breit–Wigner and Fano resonances appear as shown in figure 4. The line shape of the linear
conductance G(θ) centred at ε+(ε−) is changed into that of the linear conductance G(π − θ)

centred at ε− + U(ε+ + U). We note that the heights of two Fano peaks with θ = 0 or θ = π

are less than e2/h, while the heights of the Breit–Wigner peaks always approach e2/h at the
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plotted on the upper panel. The linear dif-
ferential conductance as a function of the
chemical potential μ under several different
values of U . Other parameters are chosen
as ε1 = ε2 = 2	, φ = 0.3π , and t0 = 	.

above temperature. The reason is that the Breit–Wigner peaks correspond to strongly coupled
electric states, and Fano peaks originate from the weakly coupled electric states.

In figure 5, we plot the dependence of the linear conductance on the interdot interaction
U . G versus the chemical potential μ and the interdot interaction is plotted in the upper panel.
The parameters of the system are chosen as φ = 0.3π, ε1 = ε2 = ε0 = 2	, and t0 = 	. As in
the above discussion, four electronic states appear in the quantum system in the presence of the
interdot interaction, at ε0−t0, ε0+t0, ε0−t0+U , and ε0+t0+U , respectively. The bright region
represents the high linear conductance, and the dark region is the low linear conductance. Fano
effects often happen in the conterminous region between the bright region and dark region. For
example, Fano peaks exist in the vicinity of lines μ = ε0 + t0 and μ = ε0 + t0 + U . We note
that Fano effects also occur in the vicinity of the line μ = ε0 − t0 + U when 0 < U < 2	. The
Breit–Wigner peak induced by state ε0−t0 distributes the bright region near the line μ = ε0−t0.
We plot the linear conductance as a function of the chemical potential μ at different values of
U in the lower panel of figure 5. In particular, states ε0 + t0 and ε0 − t0 + U are superposed
when U = 2	. The conductance spectrum consists of the Breit–Wigner resonance centred at
ε0 − t0 and two Fano resonances centred at ε0 + t0 and ε0 + t0 + U . When 0 < U < 2	,
another Fano resonance occurs at ε0 − t0 + U . For the strong interdot interaction (U = 4	),
the conductance spectrum consists of two Breit–Wigner resonances and two Fano resonances
as in the discussion in figure 4.

We pay some attention to the case in the absence of the interdot tunnelling coupling
tc = 0 for several values of total magnetic flux φ. Figure 6 shows the dependence of the
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Figure 6. The linear differential conductance G as a function of the chemical potential μ in the
absence of interdot tunnelling coupling for several AB phases. The solid, dotted, and dashed lines
correspond to the cases of φ = 0.3π, 0.6π , and π , respectively. The dash–dotted line shows the
case with U = 0 and φ = 0.3π . Other parameters are chosen as the ones in figure 2.

linear conductance on the chemical potential μ. The temperature is kBT = 0.02	. The same
energy levels of the double quantum dots and interdot interaction are set to be 2	 and 5	,
respectively. We note that two dips of the linear conductance appear at ε = ε0 and ε = ε0 + U
when a magnetic field φ is applied through the set-up due to quantum interference. As φ

increases, the two dips approach zero, and the heights and widths of the conductance peaks
are lower and narrower, respectively. The amplitudes of the middle two peaks are less than
those of the outside two peaks. The dash–dotted line shows the case of U = 0 and φ = 0.3π .
Two conductance peaks with the same heights appear at the chemical potentials 1	 and 3	,
respectively. When strong interdot interaction is considered, the heights of the two peaks
are modified by U . The results come from the fact that flip processes between + and − are
considered as shown at equation (23).

Little attention has been paid to the non-equilibrium situation expect for a very recent
work [12]. Experimentally, the bias V is applied across two electrodes, which leads to the
potential μL = EF + V/2 in the left electrode and μR = EF − V/2 for the right electrode.
Here we take EF = 0. The tunnelling current through the quantum device can be calculated by
equation (45), and the differential conductance is obtained by using the relation GV = dI/dV .
In figure 7, we plot the current I on the lower panel and the corresponding differential
conductance GV on the upper panel as functions of the applied voltage. The interdot interaction
is U = 5	 and the temperature is kBT = 0.02	. Related to the smooth increasing of tunnelling
current, the positive differential conductance (PDC) peaks often occur when the Fermi levels
of the two leads sweep across the strongly coupled electronic states, whereas the negative
differential conductance (NDC) dips, related to the abrupt reduction of the tunnelling current,
occur when the chemical potentials in the leads sweep cross the weakly coupled electronic
states. For θ = 0, two NDC dips are observed in the vicinity of ε+ and ε+ +U . The PDC peaks
are centred around ε− and ε− + U . When θ = π/2, the NDC phenomenon almost disappears
and eight conductance peaks appear due to 	−− = 	++. When θ is further increased to π , the
NDC dips re-appear. However, in this case, one NDC dip occurs around ε− and the other NDC
dip emerges near ε− + U . In order to probe the origin of the NDC, we plot the difference of
the electron numbers in two dots, �N(V ) = N1(V ) − N2(V ), as a function of V in figure 8.
N j (V ) is the occupation number in dot j when bias V is applied across the quantum device,
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which is calculated by the relationships

N1 = 1
2 (〈n+〉 + e−iθ 〈 f +

+ f−〉 + eiθ 〈 f +
− f+〉 + 〈n−〉) (47)

and

N2 = 1
2 (〈n+〉 − e−iθ 〈 f +

+ f−〉 − eiθ 〈 f +
− f+〉 + 〈n−〉). (48)

It is found that the NDC occurs when �N changes drastically, as shown in figure 8. For
example, �N has a abrupt change when the chemical potentials sweep cross the weakly
coupled electronic states ε+ and ε+ + U for θ = 0. The abrupt change in �N happens around
ε− and ε− + U for θ = π . When θ = π/2, �N , as a function of V , exhibits a smooth change

13



J. Phys.: Condens. Matter 19 (2007) 246201 Y-S Liu et al

-20 -10 0 10 20

-0.2

-0.1

0.0

0.1

0.2
-1.5

-1.0

-0.5

0.0

0.5

1.0
N

1-
N

2

Applied voltage [V]

 

G
V
(e

2 /h
)

Figure 9. Differential conductance GV
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Other parameters are chosen as in figure 6.

when the Fermi levels move across the four states. Figure 9 presents the non-equilibrium case
in the absence of interdot coupling tc = 0 with a fixed total magnetic flux φ = 0.3π . Four
NDC dips happen when the Fermi levels are aligned with ε0 and ε0 + U due to the interdot
interaction and quantum inference, and abrupt changes in �N are observed around the above
four points.

5.2. �ε 	= 0

In this section, the detuning �ε of electronic levels in the two quantum dots will be studied. The
bare levels in the two dots are fixed at ε1 = ε0 + �ε/2 and ε2 = ε0 −�ε/2, respectively. Here
the parameter ε0 is taken to be 2	. For the sake of simplicity, we still assume 	i, j = tc = 	

and ϕ = θ = 0. No magnetic flux threads through the device. The broadenings of the two
molecular states 	++ and 	−− can be written as, respectively

	++ = i2�
r
++ = 2	(1 − sin 2β) (49)

and

	−− = i2�
r
−− = 2	(1 + sin 2β). (50)

The widths of the two molecular states are sensitive to parameter β . β is adjusted by �ε and
the interdot coupling tc. The linear conductance G, DOS ρ+ (soild line), and ρ− (dotted line) as
functions of the chemical potential μ are plotted in the left column and right column in figure 10
for different values of detuning �ε. For �ε = 	, ρ+ displays two narrow peaks centred at ε+
and ε+ + U with different heights and widths as shown in figure 10. ρ− shows two wide peaks
centred at ε− and ε− + U . When the chemical potential μ sweeps wide peaks, Breit–Wigner
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Figure 10. Differential conductance G and the LDOS ρ+ and ρ− as the chemical potential μ for
�ε = 	 and �ε = −	. Other parameters are chosen as in figure 2.

resonances occur due to 	̄++ � 	̄−−. At the same time, two Fano resonances occur when
μ sweeps two narrow peaks. When �ε = −	, two Breit–Wigner resonances evolve into two
Fano resonances and two Fano resonances evolve into two Breit–Wigner resonances due to
	̄++ 
 	̄−−.

It is worthwhile to mention that the differential conductance and DOS are expected to have
no significant change in the asymmetrical case (	L 	= 	R), which have thus been neglected.

6. Summary

By using the Keldysh Green’s function method, we have studied the electronic transport
properties of the coupled double dot connected in symmetrically parallel configuration to the
leads with the interdot Coulomb interaction. Four electron states are formed in the presence
of strong interdot Coulomb interaction, which leads to four peaks in both the conductance
and DOS spectra. As a result of quantum interference effects of the electron transition through
weakly coupled and strongly coupled electronic states, the linear conductance spectrum is often
composed of two Breit–Wigner resonances and two Fano resonances when the magnetic field
is switched on or when there exists a finite difference between the energies of the different
quantum dots in the symmetrical coupling between the quantum set-up and the leads. It
has been found that the negative differential conductance (NDC) corresponding to the abrupt
change in the difference of the electron occupation number in the different quantum dots may
happen when the Fermi levels in the leads are moved across the weakly coupled energy levels by
the external bias. The parallel-coupled DQD system may be used as a promising candidate for
a quantum qubit in quantum computation in the future. Quantum computing may benefit from
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the study of the Aharonov–Bohm ring with two quantum dots as a promising phase-controlled
device.
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